Recent Advances in the Use of HPV mRNA Assays for Cervical Disease Detection

Craig Hill, Ph.D.
Associate Director, Scientific Affairs
Gen-Probe Inc.
Presentation Overview

• Cervical Cancer Overview
• HPV Overview and Natural History
• Cervical Cancer Screening
• Molecular HPV Testing
• HPV mRNA Testing
 – APTIMA HPV Assay
ESTIMATED NUMBER OF CERVICAL CANCER CASES
in 2002: 490,000

N. AMERICA 14,670
C.-S. AMERICA 71,862
EUROPE 59,931
AFRICA 78,897
ASIA 265,884

Age-adjusted incidence rates per 100,000 women per year
Cervical Cancer Facts Worldwide

• 99.7% of cervical CA due to HPV infection
• 2.30 billion women worldwide over 15 years of age
 – 300 million harbor genital HPV infection at any point in time
• 1.4 million women
 – living with clinical cervical pre-cancer/cancer
 – lower cervical cancer rates in U.S. and EU due to cervical screening programs
Human Papillomavirus
Papillomaviruses

- Family of DNA viruses
- Highly diverse and occur in almost all mammals and birds
- Over 100 Human Papillomavirus (HPV) types have been identified
 - At least 30 types are sexually transmitted

Wright, T.C., et. al. "Clinical Uses of HPV DNA Testing" ASCCP 2006
Human Papillomavirus Virus (HPV)

- At least 14 of the HPV genotypes are classified as “high-risk”
- Persistent infection of these 14 types is the causative agent of cervical cancer.
- HPV-16 & HPV-18 are the most prevalent carcinogenic types
 - Account for approx. 70-80% of cervical cancer worldwide
HPV Types in Cervical Cancer by Region

15 types are associated with cervical cancer
HPV Infection

- 30-60% of sexually active men & women are infected with genital HPV at some point in their life.
- Infections are largely asymptomatic.
- In transient HPV infections, the virus may be cleared or reduced to undetectable levels.

Burden of HPV-Related Diseases in Women

300 million
HPV infection – no abnormality

30 million
Low grade lesions

30 million
Genital warts

10 million
High grade cervical lesions

500 K
Cervical cancer
HPV Genome

• Circular DNA Genome ~8000 nucleotides divided into 2 regions:
 • Early region – viral replication
 • Late region = viral capsid

• E1, E2, E4, and E5 required for viral replication

• E6 and E7 encode viral oncoproteins

• L1, L2 encode capsid proteins

• URR (Upstream Regulatory Region) contains the genetic sequences which control transcription of the viral genome.
Viral Integration

Initial HPV infection

- Low levels of E6/E7 mRNA expression

HPV DNA integration

- Increased E6/E7 mRNA expression
- Increased probability of progression to disease
Cervical Cancer Screening
Types of Cervical Cancer

• Squamous Cell Carcinoma
 – 85% of cervical cancers fall in this category
 – Arises from squamous epithelium that covers the visible part of the cervix.
 – Well established progression through premalignant changes before a cancer develops

• Adenocarcinoma
 – Arises from the glandular lining of the endocervical canal.

• Takes ~5-15 years for the initial HPV infection to result in cervical cancer
Persistent Infection

• Defined as “HPV positive test at 2 different time points”
• Infections frequently lead to micro-lesions or proliferations not visible to the eye
 – e.g. LSIL (Low-grade squamous intraepithelial lesions)
• Cause cellular changes that lead to abnormal tissue growth (genital warts/cervical lesions)
 – greatest risk to develop high-grade CIN & invasive cancer
 – more common with high-risk than low-risk types
Latent Infection

- Infections that do not produce lesions are referred to as *latent infections*
- Tend to coexist with host for long periods of time
- Infections are largely asymptomatic
- Infections are largely transient
- Virus may be cleared or reduced to undetectable levels

Wright, T.C., et. al. “Clinical Uses of HPV DNA Testing” ASCCP 2006
Conventional Methods for Cervical Cancer Screening

<table>
<thead>
<tr>
<th>Pap Smear (Cytology)</th>
<th>Colposcopy</th>
<th>Tissue Biopsy (Histology)</th>
</tr>
</thead>
</table>
| ASC-US | Acidic wash of cervix to visualize lesions with colposcopy instrument | CIN 1
Atypical Squamous Cell-Undetermined Significance
Cervical Intraepithelial Neoplasia (Mild Dysplasia) |
| LSIL | | CIN 2 & CIN 3
Low-grade squamous intraepithelial lesion
(Moderate to Severe Dysplasia) |
| HSIL | | |

CIN 2 & CIN 3 (Moderate to Severe Dysplasia)

CIN 1
Cervical Intraepithelial Neoplasia (Mild Dysplasia)

ASC-US
Atypical Squamous Cell-Undetermined Significance

LSIL
Low-grade squamous intraepithelial lesion

HSIL
High-grade squamous intraepithelial lesion
Pap Testing

- Pap testing alone has significantly reduced mortality due to cervical cancer (70% since 1941)
- Limitations of a single Pap test
 - Suboptimal sensitivity (30% to 70%)
 - Limited reproducibility
 - Subjective diagnosis
 - Equivocal Pap test results → ASC-US (atypical squamous cells of undetermined significance)
Liquid-based Pap Testing

• Began in 1996 with the ThinPrep Pap Test by Cytyc.
• Liquid based Pap (LBC) tests have higher throughput processing than pap smears.
• Infectious organisms such as CT, GC, Trich & HPV can also be tested out of the ThinPrep vial.
• SurePath LBC media is a second type of media which is also widely used.
Dysplastic changes

- **Normal Epithelium**: 90%
- **HPV Infection**: 30 - 40%
- **CIN1**: 10 - 20%
- **CIN2**: 7 - 10 years, 30-80%
- **CIN3**: 2 - 4 years, 30 - 40%
- **Carcinoma**: 0 - 24 months, 30%
Cervical Cancer Progression Model: Non-infected

Normal cervical epithelium
Cervical Cancer Progression Model: HPV Infection

- High levels of HPV DNA
- Low levels of E6/E7 mRNA
- HPV infected cervical cells
Cervical Cancer Progression Model: Progression to CIN1

- High levels of HPV DNA
- Low levels of E6/E7 mRNA
- CIN 1 or LSIL (low grade intraepithelial lesions)
Cervical Cancer Progression Model: Pre-cancer CIN2

- High levels of HPV DNA
- Higher levels of E6/E7 mRNA
- CIN2 or HSIL (high-grade intraepithelial lesions)
Cervical Cancer Progression Model: Pre-cancer CIN3+

High levels of HPV DNA

Higher levels of E6/E7 mRNA

CIN3+ or HSIL (high-grade intraepithelial lesions)
Cervical Cancer Progression Model: Invasive Cancer

High levels of HPV DNA

Highest levels of E6/E7 mRNA

Cervical carcinoma
Molecular HPV Testing
Molecular HPV Testing

Screening Tests:
- Digene HPV (Qiagen)
- APTIMA HPV
- Roche Cobas
- NorChip (Bmx)
- Cervista (Hologic)
- Abbott

Genotyping Tests:
- Roche Linear Array
- Genomica
- Greiner Bio-one
- Innogenetics
Molecular HPV Testing Uses

• HPV Testing with Abnormal Cytology (ASC-US Triage or HPV “reflex”)
 – Determine the need for colposcopy
• HPV Testing as an adjunct to Cytology
 – HPV test ordered at the same time as Pap
• HPV Testing as the primary screen
 – HPV test done first– reflex to cytology if positive
• Post treatment follow up
Age Consideration for HPV Screening

• Adjunct HPV Testing is only recommended in women over 30 (in U.S.).*
 – If under 30, HPV infection is high, but cancer prevalence is low
 • 25% of women in their early 20’s are high-risk HPV positive but less than 0.002% of them have cervical cancer

*American Cancer Society
Digene HPV Test

- First FDA–approved HPV test for:
 - Adjunct screening, in conjunction with a Pap, of women age 30 years and older; and
 - Triage of women of any age with ASC–US Pap results.

- US National guidelines recommend that high-risk HPV testing be used in conjunction with the Pap for improved detection of cervical disease and cancer.
Performance Summary of HPV DNA Testing vs. Cytology

- HPV testing is more sensitive than cytology
- Cytology is more specific than HPV testing
- Both tests together provide the best sensitivity
- Primary HPV screening with reflex to cytology may occur in the future:
 - Screen with the most sensitive test, reflex to most specific test
 - Cost savings may occur as screening intervals could be increased
HPV mRNA Testing
HPV mRNA Testing Rationale

• Transient infections: HPV DNA is present but very little E6/E7 mRNA is expressed
 – HPV DNA is detected by HPV DNA assays
 – Concentration of mRNA may be too low for HPV mRNA tests to detect

• Too many “false positives” with regard to disease are identified with HPV DNA Tests
 – Episomal HPV DNA is present but infection regresses and no clinical disease is present
HPV mRNA Testing Rationale

• Persistent infections: HPV integrates, over-expression of E6/E7 mRNA occurs.
 – Infection is less likely to regress
 – Higher grade lesions and cancer may occur with HPV persistence

• Detection of E6/E7 mRNA may be more specific for assessing progression of clinical disease
First Commercial E6/E7 RNA Assay

HPV Proofer (Norchip; now also BioMerieux EasyQ HPV)
 - NASBA amplification prior to detection of **HPV 16,18,31,33,45** via molecular beacons
 - Resolves type, qualitative, internal control: (U1A mRNA)

Primer 1 + T7
promoter recognises
ss RNA

AMV, RnaseH,
AMV, primer 2

Double stranded DNA
- functional promoter

T7 RNA pol

Active production
of transcripts

Can be used for routinely collected cervical cytology samples

Fluorescent detection of transcripts by molecular beacons
Studies using NASBA Technology for E6 and E7 Detection

<table>
<thead>
<tr>
<th>Author</th>
<th>Population studied</th>
<th>Specimen type</th>
<th>Assay</th>
<th>Pos (%)</th>
<th>Pos (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kraus 2006</td>
<td>Cancers</td>
<td>Formalin Fixed Biopsy</td>
<td>PreTect HPV Proofer</td>
<td></td>
<td>199/204</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(98%)</td>
</tr>
<tr>
<td>Lie 2005</td>
<td>Referral population</td>
<td>Cervical liquid based cytology</td>
<td>PreTect HPV Proofer + further 3 types</td>
<td>225/291</td>
<td>20/20</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(77%)</td>
<td>(100%)</td>
</tr>
<tr>
<td>Molden 2005</td>
<td>Screening Population</td>
<td>Cervical scrape in buffer</td>
<td>PreTect HPV Proofer</td>
<td>13/14</td>
<td>(93%)</td>
</tr>
<tr>
<td>Szarewski 2008</td>
<td>Referral population</td>
<td>LBC</td>
<td>PreTect HPV Proofer</td>
<td>196/266</td>
<td>(73.6 %)</td>
</tr>
<tr>
<td>Keegan 2008</td>
<td>Convenience sample of all cytologic grades</td>
<td>LBC</td>
<td>PreTect HPV Proofer</td>
<td>60/84</td>
<td>(71.4%)</td>
</tr>
<tr>
<td>Trope 2009</td>
<td>Gynaecology clinics, high grade samples</td>
<td>LBC</td>
<td>PreTect HPV Proofer</td>
<td>412/643</td>
<td>(64.1%)</td>
</tr>
<tr>
<td>Cattani 2009</td>
<td>HC2+ convenience sample of all cytologic grades</td>
<td>LBC</td>
<td>EasyQ HPV test</td>
<td>57/66</td>
<td>(86.3%)</td>
</tr>
<tr>
<td>Halfon 2009</td>
<td>Colposcopy clinic</td>
<td>LBC</td>
<td>EasyQ HPV test</td>
<td>28/37</td>
<td>(76%)</td>
</tr>
</tbody>
</table>
APTIMA® HPV Assay

• Nucleic acid amplification assay utilizing APTIMA technology
 – Target capture specimen processing
 – Transcription-Mediated Amplification (TMA)
 – Dual Kinetic Assay (DKA) detection technology

• Qualitatively detects HPV E6/E7 mRNA of 14 high risk HPV subtypes

• CE marked in Europe for diagnostic screening of liquid based cytology (LBC) and APTIMA cervical sampler specimens
APTIMA® HPV Assay Overview

• Multiplex assay – qualitatively detects 14 HPV types in a single tube
 – Detects 14 High Risk (HR) types
 • 16, 18, 31, 33, 35, 39, 45, 51, 52, 56, 58, 59, 66, 68
 – No cross-reaction with 5 Low Risk (LR) types
 • 6, 11, 42, 43, 44

• The assay will only detect presence or absence of HR types
 – If positive, the assay will not specify which types are present
Target Capture

Poly-T oligomer bound to magnetic particle

Capture oligomer

Target sequence
Why Target Capture?

Target Capture technology is designed to:

- Virtually eliminate false negatives by removing inhibitors
- Simplify sample processing
- Allow the use of large sample volumes
- Accommodate numerous specimen types
- Allows testing of multiple specimen types in same run
- Reduce contamination by targeting a different region of the mRNA than the amplicon produced by TMA
Detection by Dual Kinetic Assay (DKA) Technology

- Modification of Hybridization Protection Assay (HPA) Technology
- Two unique acridinium ester labels with different light-off kinetics on different DNA probes
 - Allows simultaneous detection of two different nucleic acid targets
APTIMA® HPV Assay

- The APTIMA HPV assay:
 - Follows the procedure for the APTIMA Family of products
 - Difference: Addition of calibrators and internal control
 - Has a time to first result of 3.5 hours
 - Has high throughput on the TIGRIS platform
TIGRIS® DTS® System Design Features

- Fully automated: Sample processing, amplification, detection and results reporting
- Single tube assay process, 180 bar coded primary specimen tubes on board
- Penetrable tube caps utilized
- Automated bar code scanning to create work list
- Continuous batch loading of specimens with reagents/fluids on board for 1,000 tests
- System throughput:
 - 500 tests/8.5 hours; 1,000 tests/13.5 hours
APTIMA® HPV

• Specimen
 – Compatible with liquid-based cytology (LBC) cervical specimens
 • CE marked for Cytyc ThinPrep LBC specimens
 – 1 mL of Cytyc LBC
 • transferred to 2.9 mL STM
 • 30 day RT storage stability

• Internal control
 • controls for inhibition and technician error
APTIMA® HPV Studies: Assay Performance
Comparison of Predictors for High-Grade Cervical Intraepithelial Neoplasia in Women with Abnormal Smears

A Szarewski, et. al.
Cancer Epidemiol Biomarkers Prev. 2008;17(11).
November 2008
Aim

To evaluate and compare the sensitivity and specificity of several adjunctive tests for the detection of high-grade disease (CIN2+ and CIN3+).
Methods

• Women referred for colposcopy: high disease rate
• 953 women aged 18 to 72
• At referral:
 – LBC sample taken for cytology and other tests

Tests evaluated:

(From a liquid PreservCyt® sample)

<table>
<thead>
<tr>
<th>Test</th>
<th>Manufacturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Repeat cytology</td>
<td></td>
</tr>
<tr>
<td>Hybrid Capture II</td>
<td>(Digene)</td>
</tr>
<tr>
<td>Amplicor</td>
<td>(Roche)</td>
</tr>
<tr>
<td>HPV-Proofer</td>
<td>(Norchip)</td>
</tr>
<tr>
<td>APTIMA HPV assay</td>
<td>(Gen-Probe)</td>
</tr>
<tr>
<td>Linear Array</td>
<td>(Roche)</td>
</tr>
<tr>
<td>Clinical Arrays</td>
<td>(Genomica)</td>
</tr>
<tr>
<td>p16INK4a immunocytochemistry</td>
<td>(on a subset)</td>
</tr>
</tbody>
</table>

Hybrid Capture II

Detection of CIN3

Sensitivity vs. Specificity

Ideal Test

Hybrid Capture II

Amplicor

Linear Array

APTIMA

Genomica

p16INK4a

HPV-Proofer

Detection of CIN3

Predictors Study Conclusions

• Five tests have sensitivity ≥ 95%
 – Amplicor
 – APTIMA®
 – HC II
 – Linear Array
 – repeat cytology

• Of these 5 tests, APTIMA shows best specificity

Summary of HPV Referral Studies

AHPV is sensitive for detecting disease (CIN2+)

Ratnum Cuscheri Clad Dockter Smith

AHPV Sensitivity

HC2 Sensitivity
Summary of HPV Referral Studies

AHPV is more specific for detecting disease (CIN2+)
EVALUATION OF ONCOGENIC HUMAN PAPILLOMAVIRUS RNA AND DNA TESTS WITH LIQUID BASED CYTOLOGY IN PRIMARY CERVICAL CANCER SCREENING (THE FASE STUDY)

J. Monsonego, et. al.

In-Press: Int’l J. Cancer
Aims: French APTIMA Screening Evaluation (FASE) Study

- Assess the performance of the APTIMA® HPV Assay for detection of high-risk mRNA in comparison with the Hybrid Capture 2 Assay for detection of high-risk HPV DNA.

- Compare the HPV assays either as stand-alone tests (primary screening tools) or in combination with LBC (adjunct screening tools), for the detection of high-grade CIN lesions in a screening population of 5000 women in France.
Materials and Methods

FASE Study

• Regional, cross-sectional, cervical cancer screening study of 5006 women (age 20-65 years) for detection of cervical intraepithelial neoplasia (CIN)

• Comparison of the APTIMA HPV mRNA assay with the Hybrid Capture 2 HPV DNA assay using ThinPrep liquid based cytology specimens (LBC)

• HPV assays evaluated either as stand-alone tests (primary screening, or in combination with LBC (adjunct screening)

• Women cytologically abnormal or positive for either HPV test are sent for colposcopic evaluation and biopsy
FASE Opportunistic Screening Algorithm

Opportunistic screening study
17 centers
N=4,481 women

N=52 women excluded
32 missing RNA test
50 missing DNA test

Valid HPV DNA test, HPV RNA test and cytology:
N=4,429

Normal cytology and HPV DNA and HPV RNA
N=3511

End of Study: N=3020
14% Random sample referred to colposcopy N=491

End of Study
No histology obtained: N=213

Histology normal (<CIN-1+): N=160

Histology abnormal: (CIN-1+): N=118

LEEP or punch biopsy histology: N=278

Histology normal: (<CIN-1+): N=336
Histology abnormal: (CIN-1+): N=499

End of study
No colposcopy conducted: N=78

Colposcopy conducted N=840

End of study
No histology obtained: N=5

Colposcopy conducted N=840
Estimated prevalence of HPV infection by HPV DNA and HPV RNA stratified by histology

N=1113 biopsies
Screening Test Performance (CIN3+)

\(N(\text{CIN3+}) = 22 \)

<table>
<thead>
<tr>
<th>Test</th>
<th>%Sensitivity (95%CI)</th>
<th>%Specificity (95%CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LBC ASCUS</td>
<td>73.3 (55.6-91.0)</td>
<td>90.8 (91.2-93.0)</td>
</tr>
<tr>
<td>APTIMA HPV</td>
<td>95.7 (85.0-100)</td>
<td>90.3 (89.4-91.2)</td>
</tr>
<tr>
<td>Hybrid Capture2</td>
<td>95.3 (83.9-100)</td>
<td>84.9 (83.8-86.0)</td>
</tr>
</tbody>
</table>
HPV Positivity by Histology Result
Among subjects referred to colposcopy N=1331

HC2 = 65% more false positives
Conclusions
FASE Study Analysis

- Both the AHPV and HC2 assays are more sensitive than cytology
- The AHPV assay is as specific as LBC
- Fewer specimens tested positive with the AHPV assay compared with the HC2 assay, especially in women with ≤CIN1
- The AHPV assay has statistically the same sensitivity, but higher specificity and PPV than the HC2 assay for detection of CIN2+
- The AHPV E6/E7 mRNA assay may be more useful than HPV DNA assays for detecting cervical disease
Performance Summary of Current HPV Tests

• HPV DNA tests have high sensitivity but low specificity:
 – Detect episomal virus that has not integrated
 – Integration is necessary for cervical disease
 – Many transient infections are detected that will not cause cervical disease

• APTIMA HPV has equivalent clinical sensitivity but higher specificity compared to HPV DNA tests:
 – Detects mostly integrated, active virus leading to cervical disease
 – Detects all 14 subtypes
Conclusions

The APTIMA® HPV assay:

• Utilizes proven second generation nucleic acid target amplification technology
• Has instrumentation and workflow advantages that makes the assay highly automated and easy to run
• Detects HPV E6/E7 mRNA with equivalent clinical sensitivity and higher specificity than current HPV DNA tests